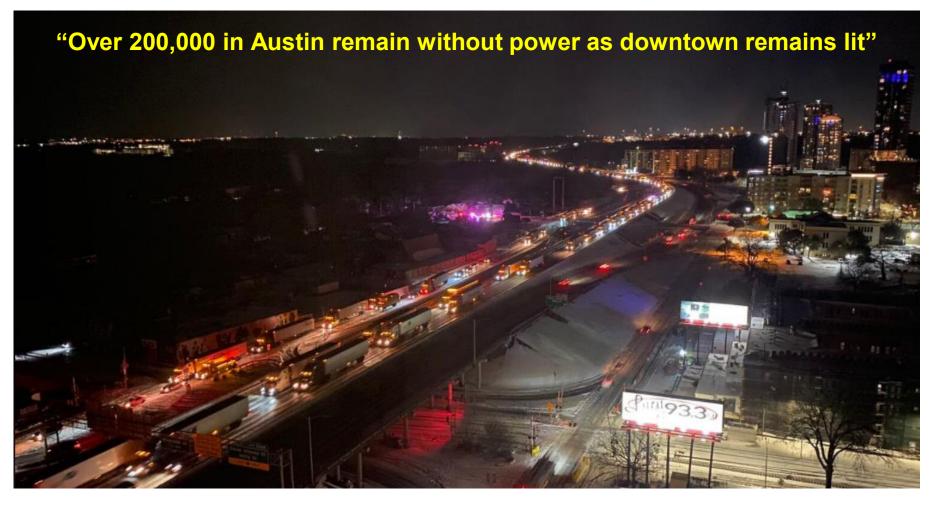
Differentiated Reliability

Future Power Markets Forum July 22, 2021

WHO WE ARE

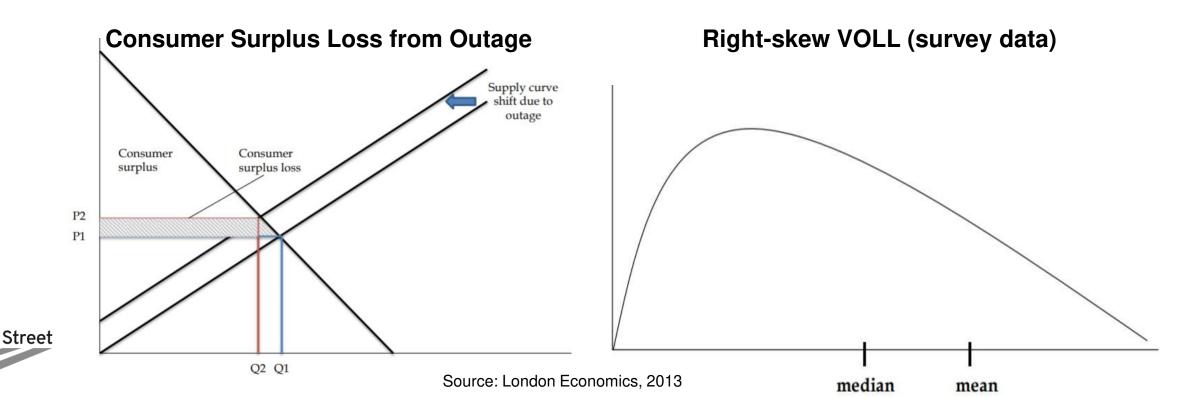
R Street Institute is a nonprofit, nonpartisan, public policy research organization. Our mission is to engage in policy research and outreach to promote free markets and limited, effective government.



WHERE WE ARE

In addition to our D.C. headquarters, we have offices in Georgia, Texas, Ohio, California and Massachusetts.

(Bad) Differentiated Reliability



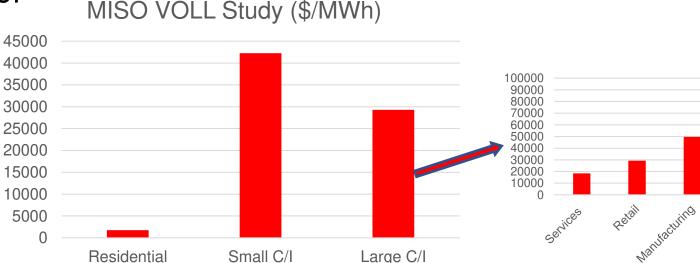
Source: CBS Austin https://cbsaustin.com/news/local/gallery/over-200000-people-in-austin-remain-without-power-while-downtown-remains-lit#photo-1

(Good) Differentiated Reliability

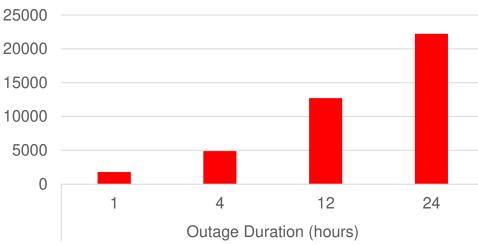
"[R]eliability differentiation based on consumer outage costs" (Siddiqi & Baughman, IEEE, 1993)

- Societal welfare view → heterogenous value of lost load (VOLL)
- Distribution not just central tendency of VOLL

VOLL Determinants


VOLL varies by 1+ <u>orders of magnitude</u>!

Estimate factors


- Time, season & duration of outage
- Number of consumers affected
- Customer profile and sector
- End use/device

treet

- Advanced notification
- Mitigating measures

Austria Resid. VOLL Study (\$/MWh)

Old Concept, Little Progress

	Status Quo	Differentiated Reliability	
Firm load treatment	Homogenous	Heterogeneous	
Reliability policy basis	Engineering heuristics	Welfare economics	
Reliability level	Exogeneous Static	Endogeneous Dynamic	
Voluntary curtailment	Limited (e.g., DR) Conservation pleas	Extensive (i.e., demand curve reflects consumer WTP) Financial motive	
Involuntary curtailment	Uniform	Differentiated	
Reliability metrics	Outage pr, duration, length	Social benefits and costs	
Reliability event cost	Mid VOLL	Min VOLL	

Key policy questions:

- Is reliability a public good? Is resource adequacy a common good?
- Can resource adequacy be made excludable? Potential to redefine property rights?

Revived interest

New Technology

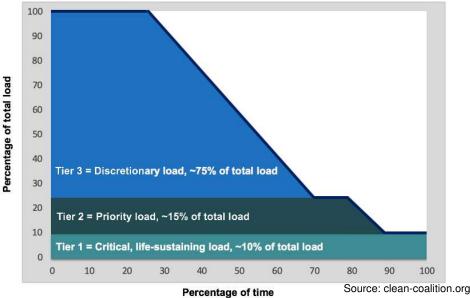
AMI, sensors, monitors, flow controls, DERs

- Privatize resource adequacy (Bushnell et al 2017)
- On-site physical reliability hedge

New Reliability Risks

Firm supply vs. de-firm demand

- Stochastic resource mix \rightarrow decarbonization impact
- Common mode failure



Preliminary take: February TX storm cost ave. \$100,000+/MWh vs. \$9,000/MWh deemed VOLL

Ford F-150 Lightning Powers Home During Outage

California Load Tiering & Prioritization Concept

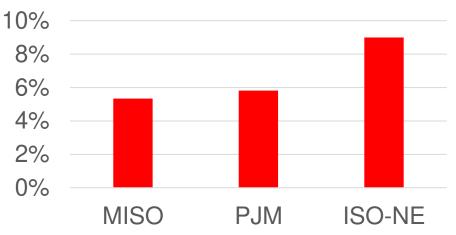
Bulk Reliability Policy Implications

- Fundamental cultural change \rightarrow redefine reliability leadership
 - Replace uniform NERC standards with consumer valuation targets
 - Distinguish short vs. long-duration outages
- Short-term reliability management reform
 - N-1: accommodate all flows w/o load curtailment
 - Integrate priority service and smart tech to reveal preferences
 - Ops cost decrease up to 43% potential (Ovaere 2019)
- Emergency procedures reform
 - Better alerts/notification
 - Deeper EEAs
 - Enable consumer participation in curtailment
 - Smart outage rotation
 - Load restoration transparency
- Planning standards reform
 - 1-in-10: arbitrary, inefficient basis Implied uniform VOLL \$100,000/MWh or more
 - Remove exogenous RA constraints \rightarrow enable market design

S&P Global

Climate disasters have rendered 'one-in-10' grid standard obsolete, experts say

Market Design Implications


Overarching Framework

- Up-size energy and ancillary service markets
 - Pricing reforms?
- Down-size capacity markets
 - Differentiated capacity products?

Demand Incorporation

- Demand curves
 - Vertical admin \rightarrow organic slope
 - At least approx. disaggregated VOLL
- Demand integrated into commitment/dispatch
 - Extend notification times
- Demand participation barriers overhaul
 - "Deep DR" as econ & emergency supply
 - Demand as... demand e.g., price-responsive

Demand Response Share of Capacity Resources

Note: 2022-23 for PJM, 2021-22 for MISO, 2020/21 ISO-NE

State Policy Implications

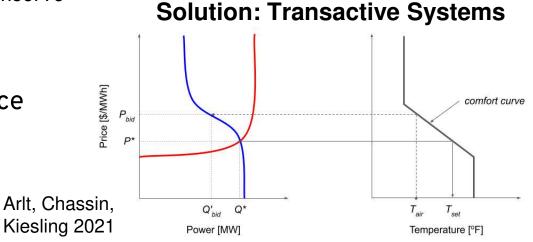
All states

- Repair wholesale-retail disconnect
- Granular curtailment prioritization by VOLL
 - Ideally consumer level (feeder vs. circuit)
 - Sectionalized distribution circuits

Restructured States

- Consumption paradox: VOLL < price
- Remedy info deficiencies and transactions costs
 - E.g., Texas REPs manually calling large consumers to conserve
 - Option: aggregate preset, automated preferences

Cost of Service States


- "least cost reliable" \rightarrow cost = customer preference
- Translate into IRP, LSE-wholesale interface
- Require "deep DR", or better...

Street

News Flash: ERCOT Prices Remain \$9,000/MWh

Differentiated Retail Products

Barriers

- Limited AMI deployment
- TDU controls reliability & AMI info
- Limited AMI usability
 - e.g., meter curtailment and reenergization
- REPs face liability risk
- Consumer confusion and fraud risk

Solutions

- Regulatory legitimization
- Product standardization vs. innovation
- Liberate AMI info access
- Enable REP meter-by-meter mngmnt
- Consumer information enhancement

Product Type	Default	Discount	Premium
Expected annual number of curtailments	2	2.5	1.8
Expected annual outage duration (hours)	6	6.5	5.8
Price (cents/kWh)	11	10	12

Strategy

Fairness First

- Address equity concerns head on (e.g., Heylen 2018)
- Embrace, don't suppress, diversity
 - J&R = consumer WTP
- Analogize to other common retail services
- Net benefits increase for disenfranchised communities
 - Disprop. affected by outages
 - Avoids overcharging or underserving

Appeal to Reliability Officials

- Perspective:
 - Gen standards 200x vs. T&D
 - Most outages routine D causes
- Political VOLL > econ VOLL
- Make small shortfalls mere inconveniences
 - E.g., ease reserve margin paranoia
- Street• Reduce damages from large shortfalls
 - E.g., resource efficiency as humanitarian

MORE: low VOLL, short, voluntary reductions

LESS: high VOLL, widespread, long duration involuntary curtailments

Thank you!

Devin Hartman dhartman@rstreet.org

> www.rstreet.org Twitter: @RSI

